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Abstract
We introduce a new type of discrete map on positive reals, showing peculiar
kinds of complexity. They combine a large-scale component (Collatz’s
itineraries on integers) with a small-scale component (standard chaotic systems,
such as logistic maps, or random noise). Usual characterizations, for example
by Lyapunov exponents, prove senseless or deceptive. Other indicators are used,
and in particular a new entropy is introduced to avoid difficulties regarding
invariant measures. All computations converge on the conclusion that the
crucial point in qualifying the type of complexity and predictability does
not consist in the alternative between deterministic perturbation or random
noise, but in the peculiar way the large-scale component reacts on the small-
scale component, altering its genericity. Possible connections with systems of
physical interest are indicated.

PACS numbers: 05.45.−a, 02.50.Ey

1. Introduction

We shall introduce a class of unidimensional discrete maps, whose mathematical interest
consists in their different kinds of high complexity. Moreover, they may be useful in exploring
the limits of usual characterizations of chaoticity.

With regard to the latter argument, in [1] the following problem was addressed: is it
possible, by bare data analysis, to have a definite answer on the type of stochasticity of a
data source? Examples considered there indicated that the answer strongly depends on the
criteria taken into consideration, for example the observation window. The observer’s interest
plays a role in distinguishing ‘deterministic chaos’ from ‘genuine randomness’ (see also [2]
for a review on related arguments). Time series analysis is concerned with large but finite sets
of data, while a definitive distinction between chaoticity and randomness typically involves
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infinity in actu (by continuum resolution or by infinite time observations). Attention focused
in [1] on the role of ‘microscopic chaos’, and the length of the sample had in general the expected
good property of stabilizing the results. Such stabilization, however, could fail in the presence
of (possibly unbounded) intermittency, since the growth of samples may contribute to confuse
qualitative differences between deterministic chaos and noise. Our purpose here is to support
and enforce this point, stressing the fact that, also for strictly deterministic systems generating
arbitrarily long time series, conclusions may be ambiguous forever. Usual indicators, in
particular, may reveal themselves to be deceptive.

This will be shown through a new type of map with particular features of high complexity,
obtained by the merging of two distinct applications. The first one is the well known logistic
map [3], given by

Fµ(x) = µx(1 − x), (1)

which, for µ = 4, is a typical chaotic map [0, 1] → [0, 1]. In fact, it is topologically conjugated
to the unilateral shift on binary sequences, a prototype of deterministic chaos [4]. F4 has been
chosen for its simplicity and numerical reliability, but other chaotic maps [0, 1] → [0, 1] could
work equally well.

The second ingredient is reminiscent of a celebrated conjecture in computation, the Collatz
problem (also known as the Syracusae, or Hesse, or Kakutani, or Ulam or 3n + 1 problem).
Briefly, it consists in the following: for a natural number n > 1, consider the application

C0(n) =
{

(3n + 1)/2 if n is odd;

n/2 if n is even.
(2)

The conjecture states that, for every initial n, the trajectory (iterated application of C0) reaches 1
in a finite number of steps, falling on the cycle 2, 1, 2, 1, 2, 1, . . .. Equivalently, every trajectory
reaches a power of 2. Itineraries form an infinite graph, the Collatz tree, whose branches are
all connected to the powers of 2 branch. This statement (a problem considered a hard one by
experts) has been successfully tested on more than 1018 integers, but a proof is still lacking
(for a review see e.g. [5]). Statistical properties of arithmetical sequences variously related to
the Collatz itineraries have often been considered (for recent achievements, see e.g. [6]).

Rule (2) and logistic map (1) may be variously combined in order to define a dynamical
system on positive reals. Our reference rule will be denoted C1. For a given initial condition
x(0) > 0, the sequence {x(t)} is defined iteratively by x(t + 1) = C1(x(t)) in the following
way: let I (x(t)) be the integer part of x(t), and y(t) = x(t) − I (x(t)). Then,

x(t + 1) = C1(x(t)) =
{

I ((3x(t) + 1)/2) + F4(y(t)) if I (x(t)) is odd;

I (x(t)/2) + F4(y(t)) if I (x(t)) is even.
(3)

C1 does not consist in the simple addition of two maps, since the logistic function alters
the even/odd character of the processed entry in a highly irregular way. Note, however, that
{y(t)} is exactly the logistic trajectory y(t + 1) = F4(y(t)), without any feedback from the
integer part.

There are two possible trivial situations: (1) if 0 < x(0) < 1, the rule (3) reduces to the
pure logistic map; (2) if x(0) is a natural number, then one obtains the itinerary to the cycle
{2, 1} (unless the Collatz conjecture is false: but the system is well defined independently of
its validity). Hereafter, we shall exclude such special initial conditions by choosing x(0) > 1
and not an integer.

In order to give evidence for the specificity of rule (3), consider the following variations:

• Rule C2. Whole quantities (3x(t) + 1)/2 and x(t)/2 replace the integer parts used in (3)
for C1, altering the recombination of noninteger parts at the next step. C2 can check the
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Figure 1. Example of C1 orbit; first 300 steps.

peculiarity of the reference rule (3), which apparently should be simpler, since this time
{y(t)} does not reduce to the logistic orbit. Such an irregular recombination could be a
source of further chaos.

• Rule R1. The contribution F4(y(t)) in (3)) for C1 is replaced by ‘stochastic noise’, for
example a uniform random variable r(t) ∈ [0, 1]. This variation should check the influence
of a strictly deterministic versus a stochastic rule.

• Rule R2. Analogously, F4(y(t)) in C2 is replaced by random noise r(t).

These four rules may be classified along two different criteria: (a) deterministic versus
random character of the small-scale component (i.e. C1 and C2 versus R1 and R2) or
(b) existence or non-existence of a feedback from the large- to the small-scale component.
In this second respect, C2 is in a distinct class, being the only rule where such a feedback
exists.

2. Orbits, densities, dimensions

Starting with C1, an example of the trajectory is shown in figures 1–3 with different details.
In figure 4, a semilog representation of a very long segment shows its great irregularity.
Empirically, one sees that trajectories have intermittent peaks, whose maximal height grows
irregularly with the length. There is no evidence even for boundedness.

Trajectories {C2(x(t))} (figures 5 and 6) present intermittency in turn but, surprisingly
enough, they are much more regular than {C1(x(t))}: the range is restricted (in no case did
we exceed the value 1000) and concentrated on certain non-uniform attracting regions, which
however are not separate attractors (i.e. dynamically invariant distinct sets). Most of the time
the trajectory is <10, and a density function would be concentrated in this low range.

We omit figures for R1 and R2, which on visual inspection essentially behave as C1,
suggesting that criterion (b) is the effective one.
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Figure 2. Same C1 orbit as figure 1 up to 3000 steps.
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Figure 3. Same C1 orbit as figure 1 up to 30 000 steps.
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Figure 4. Same C1 orbit as figure 1 up to 300 000 steps in semilog representation.

The ‘natural’ invariant measure could be established numerically by averaging densities for
a great number of long trajectories. In the range (the ‘phase space’ of the map) a coarse density
would be given by the number of occurrences in each fixed interval, i.e. by the normalized
occupation time. In principle, this computation presents some difficulties, especially for C1, R1

and R2: indeed, since the range is not a priori established, one cannot know when the orbit’s
length (for a defined minimum size ε of intervals) is sufficiently long. Different orbits imply
averaging over different ranges, and in a ε partition the microscopic scale parameter ε cannot
be compared with the natural scale of the range: a deep difference with respect to maps with
a known bounded phase space. Also usual relations between such quantities as Lyapunov
exponents (LEs) and dynamical or Kolmogorov–Sinai (KS) entropy are not obvious [7].

In practice, on the numerical side, the situation does not appear so desperate: densities are
very peaked in the lower part of the range, where they stabilize rather quickly and independently
of initial conditions, while for high values, and especially for C1, R1 and R2, intermittency
makes the stabilization very slow. In short, an effective invariant measure seems to exist and
to be computable.

This holds in particular for C2, since x(t) < 10 in 95.35 ± 0.1% and x(t) < 100 in
99.97±0.01% of occurrences (these numbers implicitly estimate the measure of the neglected
phase space). By refining the ε partition of the range, the stabilization is obviously slower and
slower. Note that coarse densities are referred to the ε intervals, but they are not expected to
be continuous with respect to the Lebesgue measure in the attracting regions. In other words,
the nature of the attracting regions does not emerge from this numerical approach (even for
the C2 rule, where computations are easier).

All these considerations are summarized in figure 7, showing, at increasing time, the
probabilities of having peaks, i.e. pieces of orbits exceeding a certain threshold. Actually, for
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Figure 5. Example of C2 orbit; first 300 steps.
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Figure 6. Same C2 orbit as figure 5; first 3000 steps.
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Figure 7. Probabilities, at increasing time, of being over a certain height for C1 (triangles) and C2
(circles). Considered cut-off thresholds are, from above, 10, 50 and 100 for both systems.

both C1 and C2, the cut-off thresholds have been positioned at heights 10, 50, 100. These
probabilities are therefore also proportional to the neglected phase space, confirming our
estimates. In principle, cut-offs may be read as an intentional distinction between spiking
and non-spiking regions, following possible resemblances with other intermittent phenomena.
However, non-spiking regions have different features for C1 and C2: the former (see figures 1–
3) indeed presents a rough and non-homogeneous self-similarity, preventing the identification
of low-valued regions with a sort of ‘laminar’ regime interrupted by chaotic intermittencies.
Possibly, such an identification could work with C2.

Such a geometrical difference should be reflected by dimensional properties of curves.
Due to intermittency and possible unboundedness, however, the box counting, entropy and
correlation dimensions are also generally unstable and difficult to calculate. What may be
easily done is the covering of trajectories by smaller and smaller ‘rods’ (the smallest being 1),
allowing for the computation of a finite-size covering dimension. We are aware that this is
a rough estimate, because of the discreteness of the curve associated with the time series.
Nevertheless, it turns out to be efficient in distinguishing between C1 and C2. More precisely,
let {x(t)}, t = 0, 1, 2, . . . , T be the time series. Consider a finite rod of decreasing length
s � 1 (in our computations s = 512, 256, . . . , 4, 2, 1). The sampled time series {X(k)} is
defined by X(k) = x(ks), k = 0, 1, . . . , m, where the sampling number m is m(s) = T/s.
Let N(s) indicate the number of rods necessary to cover the Euclidean length of the curve
associated with the sampled time series, i.e.

N(s) =
∑m

1

√
(Xk − Xk−1)2 + s2

s
. (4)

Then, an index of the curve variation at sampling s is the exponent D = D(s) defined by
N(s) = mD , or
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D(s) = log N(s)

log m(s)
(5)

as s → 1. Results are deeply different for C1, R1 and R2 on one hand, and C2 on the other.
Precisely, in the tested range 215 � T � 219:

• For C2, D(s) is independent of T and initial conditions, varying from D(512) = 1 to
D(1) = 1.08 ± 0.005.

• For C1, on the contrary, D(s) strongly depends on T , on initial conditions and also on the
considered segment of the same orbit: D(512) = 1 ± 0.05, but D(1) oscillates from 1.20
to 1.85! Of course, one could suspect that T = 219 is still too short; and nevertheless,
possible unboundedness suggests that these oscillations, certainly due to the presence of
very high peaks, could prove irreducible. Independently of this, the numerical distinction
between C1 and C2 is striking.

• As to R1 and R2, they essentially behave as C1.

Comments given above about the ‘non-laminar’ character of C1 also for low values are therefore
confirmed by these dimensional calculations, suggesting (1) that unbounded intermittency
makes C1 a system intrinsically more complex than C2 and (2) that the distinction between
stochastic and deterministic noise is much less important than the coupling rule between large-
scale itineraries and small-scale components.

3. Lyapunov exponents, entropy, complexity

We must remark that peaks explode and decay exponentially. This feature (especially when
combined with possible unboundedness) has two conflicting effects: it leaves the density
associated with peaks negligible, but has an heavy influence on orbits’ correlation. The first
effect is responsible for the good convergence of densities in the low range, but the second effect
says that KS entropy associated with these densities and LEs are not particularly meaningful
as indicators of true dynamical properties. Consider, for definiteness, a main ingredient in
the construction of the KS entropy, i.e. ‘words’: such words are strings of symbols (each of
them associated with the partition cells) in the order in which these cells are visited during the
evolution. The probabilistic weight of ‘strange words’ corresponding to peaks is negligible,
because, over a certain height, orbits are extremely rarefied (as shown by figure 7); nevertheless,
as peaks are relatively abundant, ‘strange words’ are also such. We shall see later how to take
into account this behaviour with another entropy functional.

Independently of relations to entropy, it is an instructive exercise to proceed heuristically
with the evaluation of the LE, with the usual method [8]. For C1 and for all initial conditions,
averaging over some thousands of ‘free flights’ is sufficient to obtain LE= 0.6931 . . . ≈ log(2),
i.e. the exact LE for F4. This may be easily understood: when the free flight τ of the second
orbit is shorter than the correlation time τ0 (as necessary to have stable results), the only
effective dynamics between the orbits is due to the logistic component. (Choosing an initial
distance of 10−7, the correlation time τ0 is about 20 steps.) For the same reason, however, the
independence of initial conditions is a misleading indication: in itself, it cannot guarantee any
good ‘mixing’ property of trajectories over long but finite times. The computation method
simply ignores the integer part of orbits, which however contribute heavily to the evolution and
correlation properties of the system. This implies that the usual LE has no real meaning for C1,
in accordance with previous observations about invariant measures. For the same reason, the
‘finite-size’ LE, introduced in [9] and successfully used in [1], cannot say much more either:
if the doubling time is within the correlation time, one practically deals with F4.
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(Abusing the method, for curiosity: with longer free flights, when τ is slightly greater
than τ0 the exponent increases, and this is possibly due to the influence of the integer part, but
for even greater τ it decreases, as expected, because of the saturation of distance in the mean.)

As for C2, we obtain LE ≈ 0.43 . . .. This confirms that, on the small scale, the recombined
non-integer parts produce a dynamical system completely different from F4. It is chaotic too,
but more ‘ordered’ than the logistic map: this is due to the presence of attracting regions
concentrated on low values.

These results on LEs, in addition to computational and conceptual problems about invariant
measures, discourage us from evaluating the usual KS, Renyi and block entropies, as defined
for example in [1] (for a general review, see [10]). Therefore, in order to understand the
‘information content’ of our trajectories, we shall follow another way, by introducing a new
entropy function which jumps over all these difficulties. For a trajectory segment of total
length T , consider the partition {0 ≡ t0, t1, . . . , tN ≡ T } of T , where the tk correspond to
extremal points, i.e. times when the sign of x(t + 1) − x(t) changes. This partition is further
weighted with the oscillation |x(tk) − x(tk−1)|. The total weight of the kth semi-oscillation,
corresponding to a sort of ‘wave energy’, is therefore

Wk = (tk − tk−1)|x(tk) − x(tk−1)|.
Then, a probability distribution p ≡ {p1, . . . , pN } may be associated with the trajectory by

pk = Wk

/ N∑
j=1

Wj (6)

and S(p) ≡ S(p, T ) will denote the usual Shannon entropy of this distribution:

S(p) = −
N∑

k=1

pk log(pk). (7)

Expectations about a correct entropy function can be checked on typical situations (e.g.
regular oscillations or irregularly peaked oscillations). Obviously, one has to be careful in using
naively the term ‘complexity’ associated with S(p), since, for instance, a regular oscillation
has maximal entropy, but the adaptation of terms and concepts is quite immediate.

Note the peculiarity of (7): whereas one usually starts with an ε partition in phase space and
estimates the rate of entropy increase for ‘words’ generated by the trajectory on this partition,
here we have to do with a time partition, which is intrinsically defined by dynamical properties
(change of behaviour), the cell probability being the time interval weighted with the oscillation
within. If usual entropy corresponds to the mean information needed to locate the trajectory in
the phase space, here we have the information needed to characterize the oscillations pattern
in time. In a complexity estimate, these points of view are not exclusive but complementary.
The advantages of entropy (7) are:

(1) we may ignore the problem of an invariant measure in the phase space;
(2) we may ignore the problem of ‘generating partitions’;
(3) while the finite size ε of a cell partition in phase space is an artificial parameter (requiring

in principle a limit procedure), the discreteness of the oscillation partition is a meaningful
intrinsic feature of the process;

(4) the computation is extremely easy.

Generalizations to piecewise continuous functions are almost immediate. Also for systems
with multidimensional phase space generalizations are conceivable (and this would constitute
a further advantage, since ‘time’ to be partitioned is intrinsically one dimensional).
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Figure 8. S entropy defined in formula (7) as a function of the trajectory length (in number of
steps). From above: a random noise (diamonds), a C2 orbit (circles) and two different C1 orbits
(triangles up and down).

More than actual values of this entropy, it is interesting to follow its behaviour as a function
of the total length T . It is obvious (and easy to check by numerical experiments) that for random
sources there is a logarithmic growth. As figure 8 shows, this type of growth holds indeed for
C2, independently of initial conditions, at least for sufficiently long trajectories (i.e. T > 4000,
which is a short time). This means that the small-scale chaoticity, as already measured by the
LE, is not substantially influenced by theC2 intermittency. In contrast, forC1, the growth is very
irregular and heavily dependent on initial conditions. Once again this is due to intermittent high
peaks, which irregularly alter the relative weight of the curve behaviour in different trajectory
segments. Such a necessity for reiterated adjustments in the observation scale (sensitively
registered by S(p)) may be taken as a significant index of complexity. Moreover, because of
the range of the main oscillations, the presence of random or deterministic noise on the small
scale proves irrelevant.

Note that our entropy is lower for C1 than for C2, while the small-scale chaoticity, as
measured by the LE, is higher. Such indications are not contradictory, since for these maps:

(1) LEs are sensitive only to local divergence and therefore are always stable at growing T ,
while S(p, T ) is a global indicator;

(2) high entropy, as previously recalled, is not automatically associated with complexity but
with a certain uniformity of behaviour in time (chaotic or not).

These indications should make clear how the initial questions about chaoticity, complexity,
predictability etc are intertwined with the type of interest the observer has. We can take
the results exhibited in figure 8 as a particularly clear indication of the distinction between
chaoticity, complexity and unpredictability.
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Figure 9. Power spectrum obtained via fast Fourier transform on a segment of C1 orbit (the same
as figure 4). The length is 8192 steps. The slope of the linear interpolation of data is −1.1832.

Power spectra give further information confirming the pattern of results above. For all
systems, the prevalent spectra are of the coloured noise type (the so-called 1/ωα noise). We
recall that spectra of this type occur in a great variety of physical phenomena generally classified
as ‘complex’ (see e.g. [11], and the final paragraph of the next section). However, as far as
we know, for such noise there is no universal model or explication. Moreover, for C1, R1

and R2, we can only speak of prevalent 1/ωα behaviour, since not only may the exponent α

be different for different initial conditions, but there are also frequent spectacular exceptions
and differences for different pieces of the same orbit, such as those exhibited in figures 9–11
(only figure 11 is typically 1/ωα). Note, in the linear interpolations of these figures, the large
range of exponents α. There is a good correspondence between such fluctuations in the spectral
features and the sensitivity to initial conditions already registered by entropy (7) or by covering
dimension.

Once again, C2 proves much more regular, with a 1/ωα spectrum which, in the whole set
of initial conditions we explored, has α = 1.093±4%. Figures are omitted, being qualitatively
identical to figure 11.

4. Final remarks and conclusion

All indicators are coherent in separating C1, R1 and R2 from C2, while the distinction between
random or deterministic small-scale component (noise) seems to be irrelevant. These two
groups correspond to distinct classes of complexity, whereas for both of them usual chaoticity,
as indicated by the LE, is only an index of mean local behaviour. From experimental evidence,
we have frequently argued that the main point qualifying the first class is the unboundedness–
intermittency connection. Is it possible to say something more precise?
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Figure 10. Power spectrum and linear interpolation for the next segment of the same orbit as
figure 9. The slope is −1.3124.

10
− 4

10
 − 3

10
 − 2

10
 − 1

10
 − 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

CYCLES/LENGTH

P
O

W
E

R
 S

P
E

C
T

R
U

M

Figure 11. Power spectrum and linear interpolation for the next segment of the same orbit as
figure 10. The slope is −1.4467.
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For the unboundedness of C1, we have no formal proof. However, a plausibility argument
could run as follows: F4 is topologically conjugated to the shift on binary sequences (see [4]);
this means that for every binary sequence s = (s0, s1, s2, . . .) there exists y0 such that

Fn
4 (y0) = yn ∈ Jsn

,

where Jsn
= [0, 1/2) if sn = 0 and Jsn

= [1/2, 1) if sn = 1. It is therefore possible to choose
x0 = I (x0) + y0 in such a way that the evolution of the non-integer part (that coincides with
the logistic evolution) is smaller or larger than 1/2, allowing for the correct influence on the
integer part in (3). This is not rigorous, because the fact of being smaller or larger than 1/2
does not ensure complete control of the integers’ evolution; in a statistical sense, however, it
should work. In this sense, it is plausible that, for every M , there are such initial conditions
that the x(t) > M for some t . Note that, at fixed M , a binary sequence with the required
control properties is also finite, so that the previous argument, if true, holds for uncountably
many initial conditions, probably with positive measure. This explains why, in our numerical
experiments, very high peaks are visible.

As to R1 and R2, the randomness of y(t) at every step is sufficient to ensure the existence
of ‘luck’ sequences of non-integer contributions, allowing for unboundedness. The aperiodic
appearance of such luck sequences in generic reals, although different in origin for C1, R1 and
R2, seems to be a good hint at the observed intermittency of these systems.

Clearly, such an argument does not work for C2: the recombination of non-integer parts,
indeed, distinguishes {y(t)} from the logistic trajectory, destroying both equivalence to the
shift and genericity on reals. Appearance of aperiodic privileged regions in the C2 range is
symptomatic for this highly non-generic recombination (and may be that these ‘strange’ regions
deserve further mathematical attention). Once again, these considerations are not a proof that
unbounded trajectories cannot also exist for C2; only, it is plausible that such trajectories have
probability zero, or at least that they are substantially less than in previous cases.

A simple experiment may test the correctness of our argument: consider the C1 rule (3)
where, instead of F4, there is Fµ, with µ around the value of the Feigenbaum constant [3].
Then, since the non-integer part is now concentrated on a strange attractor, C1 should recover,
at least qualitatively, the behaviour of C2: and this is precisely what happens.

In conclusion, we are aware that the maps introduced here are not physical but
mathematical speculative examples. However, their analysis may prove instructive for more
general dynamical systems. All this phenomenology seems indeed to depend on the following
points:

(a) there is an unbounded system coupled with a small-scale noise or an external perturbation
influencing its local behaviour;

(b) the large-scale system has a set of basins (in the present case the branches of the Collatz
graph) very sensitive to initial conditions, and therefore to noise or perturbations;

(c) the decisive feature in qualifying the class of complexity is not the random/deterministic
alternative, but the form of coupling between large and small scales (more precisely the
presence/absence of a feedback altering the genericity of the perturbation, or the continuity
of the associated density with respect to the reals).

This characterization of our results suggests an interesting link with sandpile models,
where avalanches play the role of Collatz’s itineraries, and the random addition of sand grains
is the perturbation shifting from one basin to another. Actually, the 1/ωα behaviour observed
in the Bak–Tang–Wiesenfeld and Manna models [12] is compatible with our C2 spectra. It
may be that, in order to obtain also the higher C1 complexity, one should elude the bounds
imposed on avalanches by the finiteness of lattice size.
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